Development of a self-transcribing and replicating (STARR™) mRNA vaccine candidate against SARS-CoV-2
FORWARD LOOKING STATEMENTS

This presentation contains forward-looking statements. These statements relate to future events and involve known and unknown risks, uncertainties and other factors which may cause our actual results, performance or achievements to be materially different from any future performances or achievements expressed or implied by the forward-looking statements. Each of these statements is based only on current information, assumptions and expectations that are inherently subject to change and involve a number of risks and uncertainties. Forward-looking statements include, but are not limited to, statements about: expectations regarding our capitalization and resources; the adequacy of our capital to support our future operations and our ability to successfully initiate and complete clinical trials; our strategy and focus; our efforts to develop a vaccine against COVID-19, the safety, efficacy or reliability of a our COVID-19 vaccine candidate; the development and commercial potential of any of our product candidates; the timing and success of our development efforts; the success of any of our trials and our ability to achieve regulatory approval for any product candidate; the entry into or modification or termination of collaborative agreements and the expected milestones and royalties from such collaborative agreements; the potential market or clinical or commercial success of the clinical development programs of Arcturus; and any statements other than statements of historical fact, including those related to Arcturus’ future cash, market or financial position.

In some cases, you can identify forward-looking statements by terms such as “may,” “will,” “should,” “could,” “would,” “expects,” “plans,” “anticipates,” “believes,” “estimates,” “projects,” “predicts,” “potential” and similar expressions (including the negative thereof) intended to identify forward looking statements. Arcturus may not actually achieve the plans, carry out the intentions or meet the expectations or projections disclosed in any forward-looking statements such as the foregoing, and you should not place undue reliance on such forward-looking statements. The forward-looking statements contained or implied in this presentation are subject to other risks and uncertainties, including those discussed under the heading "Risk Factors" in Arcturus’ Annual Report on Form 10-K for the fiscal year ended December 31, 2019, filed with the SEC on March 16, 2020 and in subsequent filings with, or submissions to, the SEC. Except as otherwise required by law, we disclaim any intention or obligation to update or revise any forward-looking statements, which speak only as of the date they were made, whether as a result of new information, future events or circumstances or otherwise.
Company Highlights

Arcturus is a Clinical-Stage mRNA Vaccines and Medicines Company

Publicly Traded (Nasdaq: ARCT)
- Headquarters: San Diego, CA
- Number of Employees: 97
- Founded: 2013

Promising Therapeutic Candidates
- LUNAR-COV19 (COVID-19 Vaccine)
- LUNAR-OTC (Ornithine Transcarbamylase Deficiency)
- LUNAR-CF (Cystic Fibrosis)
- Additional Earlier Stage Programs

Arcturus Technologies Validated by Multiple Strategic Partners

Johnson & Johnson  Takeda  ultragenyx  Cystic Fibrosis Foundation  Duke NUS Medical School  Catapult
Proprietary mRNA Technologies Driving Promising Therapeutic Programs

Broad and Strong Intellectual Property Portfolio

Value Drivers include Clinical Pipeline, Patents, mRNA & STARR™ and LUNAR® Delivery Platforms
# Arcturus Partnered Programs

<table>
<thead>
<tr>
<th>Program</th>
<th>Partner</th>
<th>Indication</th>
<th>Arcturus Chemistry</th>
<th>Arcturus Delivery</th>
<th>Program Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>LUNAR-GSD3</td>
<td>ultragenyx</td>
<td>Glycogen Storage Disease Type III</td>
<td>mRNA</td>
<td>LUNAR® Hepatocytes</td>
<td>Target IND 2020+</td>
</tr>
<tr>
<td>LUNAR-RARE</td>
<td>ultragenyx</td>
<td>Undisclosed Rare Disease</td>
<td>mRNA</td>
<td>LUNAR® Hepatocytes</td>
<td>Preclinical</td>
</tr>
<tr>
<td>LUNAR-HBV</td>
<td>Johnson &amp; Johnson</td>
<td>Hepatitis B</td>
<td>RNA</td>
<td>LUNAR® Hepatocytes</td>
<td>Preclinical</td>
</tr>
<tr>
<td>LUNAR-NASH</td>
<td>Takeda</td>
<td>NASH</td>
<td>RNA</td>
<td>LUNAR® Stellate Cells</td>
<td>Preclinical</td>
</tr>
<tr>
<td>LUNAR-RPL</td>
<td>Large Pharma</td>
<td>Infectious Disease Prophylactic Vaccines</td>
<td>SGI’s Replicon RNA</td>
<td>LUNAR®</td>
<td>Preclinical</td>
</tr>
<tr>
<td>LUNAR-AH</td>
<td>Large Animal Health Pharma</td>
<td>Infectious Disease Prophylactic Vaccines</td>
<td>SGI’s Replicon RNA</td>
<td>LUNAR®</td>
<td>Preclinical</td>
</tr>
</tbody>
</table>

Arcturus Partnered Pipeline is Across Diverse Indications, Chemistry and Cell Types and Soon to Be in the Clinic
## Arcturus Pipeline of mRNA Medicines

<table>
<thead>
<tr>
<th>Name</th>
<th>Indication</th>
<th>IND/CTA Estimated Timing</th>
<th>Clinical Stage</th>
<th>Route of Administration</th>
<th>Target Organ</th>
<th>Target Cells</th>
<th>Prevalence Worldwide</th>
</tr>
</thead>
<tbody>
<tr>
<td>LUNAR-OTC (ARCT-810)</td>
<td>Ornithine Transcarbamylase (OTC) Deficiency</td>
<td>IND &amp; CTA: Trials Allowed to Proceed</td>
<td>U.S. Phase 1b N.Z. Phase 1</td>
<td>Intravenous (i.v.)</td>
<td>Liver</td>
<td>Hepatocytes</td>
<td>&gt; 10,000</td>
</tr>
<tr>
<td>LUNAR-COV19</td>
<td>ARCT-021 Vaccine</td>
<td>HSA Approved CTA: Allowed to Proceed</td>
<td>Singapore Phase 1/2 Clinical</td>
<td>Intramuscular (i.m.)</td>
<td>Muscle</td>
<td>Myocytes Dendritic Cells</td>
<td>Global</td>
</tr>
<tr>
<td>LUNAR-CF</td>
<td>Cystic Fibrosis</td>
<td>IND 2021</td>
<td>Preclinical</td>
<td>Inhaled Aerosol</td>
<td>Lung</td>
<td>Bronchial Epithelial Cells</td>
<td>&gt; 70,000</td>
</tr>
<tr>
<td>LUNAR-CV</td>
<td>Rare Cardiovascular Disease</td>
<td>IND 2022</td>
<td>Preclinical</td>
<td>Intravenous (i.v.)</td>
<td>Liver</td>
<td>Hepatocytes</td>
<td>Undisclosed</td>
</tr>
<tr>
<td>LUNAR-MD</td>
<td>Rare Metabolic Disease</td>
<td>IND 2022</td>
<td>Preclinical</td>
<td>Intravenous (i.v.)</td>
<td>Liver</td>
<td>Hepatocytes</td>
<td>Undisclosed</td>
</tr>
</tbody>
</table>

- LUNAR-OTC (ARCT-810): Phase 1b & Phase 1 Clinical Trials Allowed to Proceed Under IND & CTA, Respectively
- LUNAR-COV19: CTA Filing Target Summer 2020
- LUNAR-CF: IND Application Filing Target 2021
Arcturus LUNAR-COV19 Vaccine is Differentiated

Key Differences from other mRNA vaccines

• Self-replicating STARR™ mRNA Technology, not conventional mRNA
• Proprietary LUNAR® Nanoparticle Delivery Technology
• Novel, proprietary and integrated Manufacturing Processes for mRNA Drug Substance and Drug Product

The integration of all three capabilities that are proprietary to Arcturus and the iterative process required creates significant challenges for a self-replicating mRNA to be developed
**Arcturus COVID-19 Vaccine has Significant Advantages**

**Potential Single Shot**
- Small, single intramuscular injection, devoid of adjuvants
- Simpler logistics for vaccinating large populations
- Lyophilized formulation further simplifies distribution

**Very Low Dose**
- Reduced potential side effects, e.g. ISR’s
- Means potentially more people vaccinated per manufactured batch

**Utilizes STARR™ mRNA (self-transcribing and self-replicating mRNA)**
- STARR™ mRNA produces 30X more protein than conventional mRNA
- Lasts longer, booster shot may be unnecessary

**Contains No Viruses or Viral Material**
- No dead viruses, no attenuated viruses, no virus or viral vectors (AAVs) used to deliver the mRNA vaccine
- LUNAR® Delivery Technology is Non-Viral

**Readily Manufactured**
- Arcturus Proprietary Processes
- Proven; Scalable; High yields; High purities
- Capacity established in EU and US
**LUNAR® Delivery Technology**

- LUNAR Associates with Cell Membrane
  - Enters Cell Via Endocytosis
- Lipid Particle in Endosome
  - Increased Acidity as Endosome Ages
- pH-Mediated Disruption
  - Rapid Biodegradation of Vehicle
- RNA in Cytosol
  - RNA Processing and Translation
Arcturus Developing LUNAR-COV 19 Vaccine with Duke-NUS

Arcturus Duke-NUS Partnership Initiated March 4, 2020

- Duke-NUS Medical School: an academic world leader in coronaviruses and infectious diseases
- Funded up to $10M by Duke-NUS

Arcturus COVID-19 Vaccine Benefits From Duke-NUS Genetic Correlation System

- Helps Arcturus learn more quickly about the LUNAR-COV19 efficacy and safety profile
- Specific gene changes correlate with efficacy and safety
  - Level of neutralizing antibody titers
  - Safety-related adverse events (headache, fever)
- Gene expression changes can be measured within the first 5 days following vaccination

Data generated from the Duke-NUS system gives Arcturus the ability to more efficiently select the dose and streamline the vaccine development program
STARR™ Technology

Cargo: Synthetic IVT

Self-Transcribing and Replicating RNA (STARR)

Delivery Vehicle: LUNAR®

STARR™ technology can be used to generate a protective immune response or drive therapeutic protein expression.
mRNA vs Replicon RNA

Conventional mRNA vs Replicon RNA

Different profiles of transgene expressions

Figure modified from Maruggi, et al. (2019) Mol. Therapy 27:757
STARR™ mRNA Superior to Conventional mRNA

Self-Transcribing and Replicating mRNA (STARR™) delivered with LUNAR® provides higher protein expression and potentially longer-lasting duration of protein expression in mouse.

**STARR™ Technology**

30-Fold Higher Protein Expression

- BALB/c mice were administered a 2 mg dose of either STARR™ RNA or mRNA expressing luciferase in a 50 mL injection volume.
- Protein expression was measured on days 1, 3 and 7 after administration.

STARR™ protein expression increased ~10 fold whereas mRNA decreased ~100 fold over 7-day period.

**Graph:**

- **STARR™ mRNA vs. Conventional mRNA**
- **Protein Expression Over 7 days**
- **Protein Expression**
  - STARR™ mRNA
  - Conventional mRNA
  - PBS Control

- Days after Dosing: 0, 1, 2, 3, 4, 5, 6, 7
- Log Scale
- Protein Expression: 10^5 to 10^10

**Legend:**

- STARR™ mRNA: 30X More Protein
- Conventional mRNA
- PBS Control
STARR™ mRNA SARS-CoV-2 Vaccine
# Immunogenicity Study Design

<table>
<thead>
<tr>
<th>Type of Construct</th>
<th>Antigen</th>
<th>Dose (µg)</th>
<th>Dosing Schedule</th>
<th>Bleed Dates (Day)</th>
<th># of mice/group</th>
<th>Assays</th>
</tr>
</thead>
<tbody>
<tr>
<td>STARR&lt;sup&gt;TM&lt;/sup&gt;</td>
<td>Full Length Spike (1278 AA)</td>
<td>0.2, 2.0, 10.0</td>
<td>Day 0, Day 28&lt;sup&gt;c&lt;/sup&gt;</td>
<td>10, 20, 30, 40, 50, 60</td>
<td>5</td>
<td>Neutralizing Ab Titer&lt;sup&gt;a&lt;/sup&gt; Total Anti-S IgM&lt;sup&gt;b&lt;/sup&gt; Total Anti-S IgG&lt;sup&gt;b&lt;/sup&gt;</td>
</tr>
<tr>
<td>mRNA</td>
<td>Full Length Spike (1278 AA)</td>
<td>0.2, 2.0, 10.0</td>
<td>Day 0, Day 28&lt;sup&gt;c&lt;/sup&gt;</td>
<td>10, 20, 30, 40, 50, 60</td>
<td>5</td>
<td>Neutralizing Ab Titer&lt;sup&gt;a&lt;/sup&gt; Total Anti-S IgM&lt;sup&gt;b&lt;/sup&gt; Total Anti-S IgG&lt;sup&gt;b&lt;/sup&gt;</td>
</tr>
<tr>
<td>Negative Control</td>
<td>PBS</td>
<td></td>
<td>Day 0, Day 28&lt;sup&gt;c&lt;/sup&gt;</td>
<td>10, 20, 30, 40, 50, 60</td>
<td>5</td>
<td>Neutralizing Ab Titer&lt;sup&gt;a&lt;/sup&gt; Total Anti-S IgM&lt;sup&gt;b&lt;/sup&gt; Total Anti-S IgG&lt;sup&gt;b&lt;/sup&gt;</td>
</tr>
</tbody>
</table>

<sup>a</sup>Neutralization assay conducted on Vero-E6 cells with a SARS-CoV-2 Singapore Clinical Isolate. Serum diluted 1:10 and neutralization criteria was no CPE after 4-day incubation at 37°C

<sup>b</sup>Spike specific IgM and IgG responses will be assayed by Luminex Binding Assay

<sup>c</sup>Boost at day 28 as was not given due to steadily increasing Ab levels

---

**Dr. Eng Eong Ooi’s Lab at Duke-NUS independently conducted all immunogenicity Assays**
Anti-Spike Glycoprotein IgM Immune Response
10 Days Post Vaccination

Summary of Anti-Spike Protein IgM Titer

Results
- Increase in IgM titers with increasing RNA dose for both STARR™ and mRNA Spike protein post immunization
- Higher IgM titers observed for STARR™-Spike compared to mRNA-Spike at equivalent RNA doses
Summary of Results

- Higher anti-SARS-CoV-2 Spike Glycoprotein IgG elicited by STARR™ RNA compared to mRNA after single vaccination
- IgG produced by STARR™ vaccination continues to increase up to day 40 for the 0.2 µg and day 50 for the 2.0 µg and 10 µg RNA doses, whereas the IgG levels produced by the mRNA plateaued at day 10
• STARR-based vaccine produced 10-fold higher anti-full-length spike glycoprotein IgG compared to mRNA-based vaccine
• STARR-based vaccine IgG titers against epitopes 1, 2 and 3 representing different spike protein domains were at least 10-fold higher than mRNA-based vaccine IgG titers
• STARR-based vaccine IgG titers for 0.2 µg RNA dose were equivalent or greater than anti-spike glycoprotein IgG titers obtained with 10.0 µg mRNA vaccine indicating a 50 fold greater potency
Day 30 and Day 60 Mouse Neutralizing Antibody Titers

- 0.2 µg RNA dose showed 80% seroconversion by day 30 and 100% seroconversion by day 60 post vaccination
- 2.0 µg and 10 µg RNA doses yielded 100% seroconversion by day 30 and maintained 100% seroconversion by day 60 post vaccination
- PRNT 80 neutralizing antibody increased ~2-fold from day 30 to day 60 for the 2.0 µg and 10 µg RNA doses
Arcturus Vaccine elicits a Balanced Cell Mediated Immune Response

Results Summary

- RNA dose dependent increase in IFN-γ positive CD8+ T-cells
- Th1 biased CD4+ response and lack of change in Th1/Th2 ratio with increased RNA dose indicate balanced cell mediated immune response

### Table: RNA Dose Response

<table>
<thead>
<tr>
<th>RNA Dose (µg)</th>
<th>% IFN-g + CD8+ T Cells</th>
<th>CD4+ Th1/Th2 (IFN-g/IL4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>4.0</td>
<td>4.6</td>
</tr>
<tr>
<td>0.2</td>
<td>4.5</td>
<td>5.3</td>
</tr>
<tr>
<td>2.0</td>
<td>6.0</td>
<td>5.0</td>
</tr>
<tr>
<td>10.0</td>
<td>8.0</td>
<td>6.0</td>
</tr>
</tbody>
</table>
**STARR vs mRNA SARS-CoV-2 Vaccine**

*Th1 response vs. Th2 Response in Balb/c Mice*

- STARR and mRNA-based vaccines have a Th1 response at the 0.2 µg RNA Dose (IgG2a/IgG1 >1)
- 2.0 µg and 10 µg RNA doses show STARR based vaccine maintain a Th1 response whereas mRNA-based vaccine has a Th2 response (IgG2a/IgG1 <1)
**ELISpot Results**

- STARR-based vaccine produced higher number of spike glycoprotein specific T cells than mRNA-based vaccine.
- The highest response was observed for Pool 2 and to a lesser extent to Pool 1.
Single Vaccination of ARCT-021 Completely Protects Transgenic Mice from Viral Lethal Challenge

SARS-CoV-2 Virus Challenge Results
• Transgenic mice vaccinated with a single dose of either 2 µg or 10 µg RNA dose of ARCT-021 were completely protected from SARS-CoV-2 infection for 14 days post viral lethal challenge and showed no sign of infection based on body weight, clinical scores and behavior
No RT-PCR detectable viral RNA and no infectious virus detected in transgenic mouse lungs 5 days post sublethal viral challenge.
LUNAR-COV19 Data Summary

- **Very low dose:** Strong neutralizing antibody response with just a single dose of 0.2 – 10 µg STARR™ RNA
- **Strong humoral response:** continuous increase in neutralizing antibodies beyond Day 60
- **Strong T-cell response:** dose response increase in IFN-g positive CD8⁺ T-cells
- **Complete protection** against viral lethal challenge 30 days post single vaccination
- No indication of Vaccine Associated Immune Enhance Respiratory Disease (VAERD) in vaccinated transgenic mice following lethal and sublethal virus challenge
- **Balanced cellular immune response** – minimizes potential for enhanced respiratory disease (ERD) and lower dose may yield lower local and systemic reactogenic events suggesting a promising safety profile
- **Superior** immunogenic profile of STARR™ compared to conventional mRNA
- **No virus material, adjuvants, preservatives or antibiotics:** reduces public concerns

**Arcturus LUNAR-COV19 is a most promising COVID-19 vaccine**
Drug Substance / Drug Product
CMC
Drug Substance: mRNA Design

Arcturus’ proprietary mRNA optimization platform

**Optimized conditions**
- mRNA sequence
- Chemistry
- Process optimization

**Sustained hEPO activity in NHPs upon repeat dosing**

**Weekly Dosing in Non-Human Primates**

<table>
<thead>
<tr>
<th>Dose</th>
<th>PBS control</th>
<th>LUNAR-EPO mRNA 0.1 mg/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2nd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3rd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4th</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Proprietary mRNA Optimization Platform Demonstrates Sustained Activity Upon Repeat Dosing in NHPs
## Drug Substance (mRNA) Manufacturing

### Features

<table>
<thead>
<tr>
<th>Features</th>
<th>Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimized IVT Method</td>
<td>Reduced Cost; Higher Purity</td>
</tr>
<tr>
<td>Improved Capping Reaction</td>
<td>Reduced Cost of Goods</td>
</tr>
<tr>
<td>Proprietary Purification Process</td>
<td>Higher Purity in a Shorter Time</td>
</tr>
<tr>
<td>Efficient</td>
<td>Entire Process Less Than One Week</td>
</tr>
<tr>
<td>Scalable to &gt; 1Kg</td>
<td>Access Large Patient Populations</td>
</tr>
<tr>
<td>Adaptable</td>
<td>Can Utilize a Variety of Modifications</td>
</tr>
</tbody>
</table>

Arcturus Internal non-GMP mRNA Production Capabilities: Up to 30 g in Less Than One Week
Drug Substance (mRNA) Manufacturing

RNA Yield

RNA Purity

- **Non-GMP Lots Produced at Arcturus**
- **GMP Lots Produced at CMO as part of recent GMP campaign**

Three 12.5 g lots produced in recent GMP campaign are of equivalent quality and yield
**Drug Product (LUNAR® + mRNA) Manufacturing**

- Manufacturing of Drug Product Demonstrated up to Multigram Scale with Yields > 85%
- GMP Batch of LUNAR®-OTC (ARCT-810) Drug Product Manufactured and Released
Lyophilized ARCT-021

• Lyophilized ARCT-021 maintains key physicochemical properties
• Lyophilized formulation yielded equivalent mouse neutralizing antibody titers based on inhibition of ACE2 receptor binding assay (surrogate neutralizing antibody titer assay)
LUNAR- cov19 Clinical Plan

Phase 1/2 Clinical Trial to begin in Summer 2020

Shipment of GMP Manufactured LUNAR-COV19 Vaccine

Human Dosing to Initiate this Summer

- Phase 1/2 clinical trial at single site: Duke-NUS Medical School in Singapore

Primary Goal: Identify optimal dose
Primary Endpoints: Safety and tolerability
Secondary Endpoints: Measures of immunogenicity and virus neutralization

Also evaluating T-cell responses (CD8+ and TH1/TH2 and epitope mapping)

Study Design:

- 108 healthy volunteer adults
- 3 dose levels
- Elderly as well as younger adults

Trial design allows us to potentially rapidly select dose to take forward to large registrational studies